

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Caffeine: Towards Uniformed Representation and Acceleration for Deep Convolutional Neural Networks

Chen Zhang, Zhenman Fang, Peipei Zhou et al.

Presented by Zhuangwei Zhuang

South China University of Technology

October 9, 2016

(日) (同) (三) (三)

1/31

Content

FPGA

- C.Zhang et a
- Introduction
- Motivation
- Uniformed CNN Representation
- Caffeine Design
- Roofline Model
- Experiment and Result
- Conclusion

- 1 Introduction
- 2 Motivation
- 3 Uniformed CNN Representation
- 4 Caffeine Design
- 5 Roofline Model
- 6 Experiment and Result
- 7 Conclusion

Introduction CNN Application

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Figure: Face Detection

Figure: Classification

(ロ)、(部)、(目)、(目)、(目)、(の)への 3/31

Introduction Convolutional Neural Networks

FPGA

C.Zhang et a

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Figure: A real-life CNN model

CNN Models

- VGG16
- AlexNet
- GoogLeNet

Introduction Convolutional Neural Networks

FPGA

C.Zhang et a

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Figure: Inference phase in CNN

Architecture

- Convolutional layers(CONV)
- Pooling layers(POOL)
- Activation layers(ReLU)
- Fully-connected layers(FCN)

Motivation FPGA-Based Platform

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Hardware platforms for CNN accelerator: GPU, FPGA, ASIC.

Advantages of FPGA

- Low power
- High energy efficiency
- Reprogrammability

Constraints of FPGA

- Limited computation resource
- Limited on-chip memory
- Limited external-memory bandwidth

Motivation Analysis of Real-Life CNN

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

CONV POOL ReLU FCN

	CONV	POOL	ReLU	FCN
Comput.ops (10^7)	3E3(99.5%)	0.6(0%)	1.4(0%)	12.3(0.4%)
Storage(MB)	113(19.3%)	0(0%)	0(0%)	471.6(80.6%)
Time% in pure sw	96.3%	0.0%	0.0%	3.7%
After CONV acc	48.7%	0.0%	0.0%	51.2%

Table: Analysis of VGG16 model

Motivation Analysis of Real-Life CNN

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

- CONV layers are computation-intensive while FCN layers are memory-intensive
- FCN layers become new bottleneck after CONV layers be accelerated
- However, most prior FPGA acceleration studies on CNN mainly focus on CONV layers in CNN

Motivation Problem

FPGA

C.Zhang et a

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

What is the right representation for a uniformed acceleration for different layers of CNN?

How to design and implement efficient and reusable FPGA engine for CNN?

イロト イポト イヨト イヨト

Uniformed CNN Representation Matrix-Multiplication

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

 $C_1 = A_1 \times B_1 + A_2 \times B_2 + A_3 \times B_3 + A_4 \times B_4$

Figure: Matrix-multiplication of FCN

Uniformed CNN Representation

Figure: Input-major mapping with Ker = 1

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 11 / 31

Uniformed CNN Representation

Figure: Input-major mapping with Ker = 2

<ロト < 部 > < 言 > < 言 > 言 ジ < ご 2 / 31

Uniformed CNN Representation Weight-Major Mapping

Figure: Weight-major mapping with Ker = 1

Uniformed CNN Representation Weight-Major Mapping

Figure: Weight-major mapping with Ker = 2

(ロ)、(部)、(E)、(E)、 E) の(C) 14/31

Uniformed CNN Representation

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

	Uniformed	Conv	FCN-Input	FCN-Weight
Input FM#	N	N _{conv}	N_{fcn}/ker	n_{fcn}/ker
Input FM Size	$R_i \cdot C_i$	$R_{conv}^{in} \cdot C_{conv}^{in}$	$batch \cdot ker$	$M_{fcn} \cdot ker$
Output FM#	M	M_{conv}	M_{fcn}	batch
Output FM Size	$R_o \cdot C_o$	$R_{conv}^{out} \cdot C_{conv}^{out}$	batch	M_{fcn}
Kernel Size	$K_1 \cdot K_2$	$K_1 \cdot K_2$	ker	ker
Stride	$S_1 \cdot S_2$	$S_1 \cdot S_2$	ker	ker

 Table:
 Uniformed representation parameters for CONV, FCN input-major

 mapping and FCN weight-major mapping

Caffeine Design System Overview

FPGA

- C.Zhang et a
- Introduction
- Motivation
- Uniformed CNN Representatior

Caffeine Design

- Roofline Model
- Experiment and Result
- Conclusion

Figure: Caffe-Caffeine integration

Caffeine Design

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Figure: Scalable accelerator architecture design

Caffeine Design Bandwidth Optimization

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Figure: Effective FPGA DRAM bandwidth

- Effective of FPGA bandwidth goes up with the increase of burst length, and finally flatten
- Limited burst length greatly degrade actual bandwidth performance

Caffeine Design Bandwidth Optimization

FPGA

C.Zhang et al

- Introduction
- Motivation
- Uniformed CNN Representation

Caffeine Design

- Roofline Model
- Experiment and Result
- Conclusion

Figure: A piece of data tile

Figure: A logic 3D data layout

Caffeine Design Bandwidth Optimization

FPGA

- C.Zhang et al
- Introduction
- Motivation
- Uniformed CNN Representation

Caffeine Design

- Roofline Model
- Experiment and Result
- Conclusion

Data	0	1		4	5			16	17		:	20	21
DRAM Addr.	x0	x 4		x10	x14			x40	x4	4		x50	x54
•													
Data	0	16	1	17	4	20	5		21				
DRAM Addr.	x0	x4	x8	хс	x10	x14	x	18	x1c				

Figure: Optimization of data layout in DRAM space

- Move data for an entire tile to a continuous space for improving burst length and bit-length
- Interleave data for different BRAM banks for reducing bank read/write conflicts

Roofline Model Original Model

C.Zhang et al

Motivation

Uniformed CNN Representatio

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

$$DRAM_Access = \alpha_{in} \cdot \beta_{in} + \alpha_{weight} \cdot \beta_{weight} + \alpha_{out} \cdot \beta_{out} \quad (1)$$

• α : number of data transfer times for input/weight/output data

β: size of input/weight/output data tile

Roofline Model Revised Model

FPGA

- C.Zhang et al
- Introduction
- Motivation
- Uniformed CNN Representation
- Caffeine Design
- Roofline Model
- Experiment and Result
- Conclusion

Figure: Effective FPGA DRAM bandwidth

 Original model ignores the fact that different data volumes in each tile have different burst length and effective bandwidth

Roofline Model Revised Model

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

$$DRAM_Access = \gamma_{in} \cdot \alpha_{in} \cdot \beta_{in} + \gamma_{weight} \cdot \alpha_{weight} \cdot \beta_{weight} + \gamma_{out} \cdot \alpha_{out} \cdot \beta_{out}$$
(2)

$$\gamma = max_bandwidth/f(\beta)$$
 (3)

<ロ> <同> <同> < 回> < 回>

3

23/31

 $f(\beta)$ is the effective function between bandwidth and burst length

Roofline Model **Revised Model**

FPGA

- Roofline Model

Figure: Comparison of original, revised model and on-board test result with input-major mapping

20

B1

Original: 158.5 GOPs

Revised: 156.6 GOPs

30

Test: 172.9 GOPs

Batch Size

40

Original: 4.99 GOPs

Revised: 4.97 GOPs

10

Test: 5.40 GOPs

- Revised model is more accurate than original model
- Weight-major mapping is better than input-major mapping in small batch size, which is required for real-time inference phase

0

Experiment and Result Resource Utilization

- C.Zhang et a
- Introduction
- Motivation
- Uniformed CNN Representatior
- Caffeine Design
- Roofline Model
- Experiment and Result

Conclusion

	DSP	BRAM	LUT	FF	Freq.
VC709 fixed	2833(78%)	1248(42%)	3E5(81%)	3E5(36%)	150MHz
KU fixed	1058(38%)	782(36%)	1E5(31%)	8E4(11%)	200MHz
KU float	1314(47%)	798(36%)	2E5(46%)	2E5(26%)	200MHz

Table: FPGA resource utilization of Caffeine

25 / 31

э

Experiment and Result Comparison with CPU/GPU

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

Platforms	CPU	CPU+GPU	CPU+	FPGA
Device	E5-2609	K40	KU60	VX690T
Technology	22nm	28nm	20nm	28nm
Freq.	1.9GHz	1GHz	200MHz	150MHz
Power(W)	150	250	25	26
Latency (ms/image)	733.7	15.3	101.15	65.13
Speedup	1x	48×	7.3×	9.7×
J per image	110	3.8	2.5	1.69
Energy Efficiency	1x	28.7×	43.5x	65x

Table: Comparison with CPU/GPU platforms

Experiment and Result Comparison with CPU/GPU

Experiment and Result Comparison with Prior Work

FPGA

C.Zhang et al

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

		Prior Works	This Work					
CNN models	AlexNet	VGG						
Durley	Virtex7	Zynq	Stratix-V	Ultrascale	Virtex7			
Device	485T	XC7Z045	GSD8	KU060	690T			
Precision	float	fixed fixed		fixed	fixed			
	32bit	16bit	16bit	16bit	16bit			
Numbers of DSP	2240	780	1963	1058	2833			
CONV (peak) GOPS	83.8	254.8	-	365	636			
CONV (overall) GOPS	61.6	187.8	136.5	310	488			
FCN (overall) GOPS	-	1.2	-	173	170			
CONV+FCN GOPS	-	137	117.8	266	354			

Table: Comparison with other FPGA work

FPGA

Experiment and Result Comparison with Prior Work

Conclusion

Figure: Comparison with other FPGA work

Conclusion

Contribution

FPGA

- C.Zhang et al
- Introduction
- Motivation
- Uniformed CNN Representation
- Caffeine Design
- Roofline Model
- Experiment and Result
- Conclusion

- Proposed a uniformed convolutional MM representation for CNN layers
- Designed and implemented Caffeine

Result

- Achieved 365 GOPS on KU060 and 636 GOPS on VC707
- Achieved 7.3x and 43.5x performance and energy gains over a 12-core CPU and 1.5x better energy-efficiency over GPU on KU060

FPGA

C.Zhang et a

Introduction

Motivation

Uniformed CNN Representation

Caffeine Design

Roofline Model

Experiment and Result

Conclusion

THANK YOU Q & A?